
AFRL-RV-PS- AFRL-RV-PS- 
TR-2014-0139 TR-2014-0139 

MOMENT-PRESERVING COMPUTATIONAL 
APPROACH FOR HIGH ENERGY CHARGED 
PARTICLE TRANSPORT 

Third Interim Performance Report 

Anil K. Prinja 
David A. Dixon 

Chemical and Nuclear Engineering 
Department MSC01 1120, 209 Farris 
Engineering Center Albuquerque, NM 87131 

16 May 2014 

Interim Report 

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. 

AIR FORCE RESEARCH LABORATORY 
Space Vehicles Directorate 
3550 Aberdeen Ave SE 
AIR FORCE MATERIEL COMMAND 
KIRTLAND AIR FORCE BASE, NM 87117-5776 

University of New Mexico



DTIC COPY 

NOTICE AND SIGNATURE PAGE 

Using Government drawings, specifications, or other data included in this document for  
any purpose other than Government procurement does not in any way obligate the U.S. 
Government. The fact that the Government formulated or supplied the drawings,  
specifications, or other data does not license the holder or any other person or corporation; 
or convey any rights or permission to manufacture, use, or sell any patented invention that  
may relate to them.  

This report was cleared for public release by the 377 ABW Public Affairs Office and is 
available to the general public, including foreign nationals. Copies may be obtained from the 
Defense Technical Information Center (DTIC) (http://www.dtic.mil).   

AFRL-RV-PS-TR-2014-0139 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 

//SIGNED// 
  ___________________________________ 
Glenn M. Vaughan, Colonel, USAF 

//SIGNED//
____________________________   _ 
Adrian Wheelock               
Project Manager, AFRL/RVBXR   Chief, Battlespace Environment Division 

This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 

Approved for public release; distribution is unlimited.



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)
16-05-2014 

2. REPORT TYPE
Interim Report 

3. DATES COVERED (From - To)
01 May 2013 to 01 May 2014 

4. TITLE AND SUBTITLE
MOMENT-PRESERVING COMPUTATIONAL APPROACH FOR HIGH ENERGY 
CHARGED PARTICLE TRANSPORT 
Second Interim Performance Report 

5a. CONTRACT NUMBER 

FA9453-11-1-0276 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 
62601F 

6. AUTHOR(S)
Anil K. Prinja and David A. Dixon 

5d. PROJECT NUMBER 
1010 

5e. TASK NUMBER 
PPM00011354 

 

5f. WORK UNIT NUMBER
EF004076 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of New Mexico 
Chemical and Nuclear Engineering Department 
MSC01 1120, 209 Farris Engineering Center 
Albuquerque, NM 87131 

8. PERFORMING ORGANIZATION REPORT
NUMBER

   9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Air Force Research Laboratory 
Space Vehicles Directorate 
3550 Aberdeen Avenue SE 
Kirtland AFB, NM 87117-5776 

AFRL/RVBXR 

 11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

AFRL-RV-PS-TR-2014-0139 

 12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited. (377ABW-2014-0537 dtd 10 Jul 2014) 

13. SUPPLEMENTARY NOTES

14. ABSTRACT
An algorithm for generating Generalized Boltzmann Fokker-Plank (GBFP) discrete cross-section data and the implementation of the 

discrete and hybrid models in Geant4 are described. A test suite with various problems of interest was completed and many of the results 
from the test suite are presented. Several tools for tallying quantities of interest required for the test suite were incorporated. New analog 
and GBFP models that utilize elastic DCS data were implemented and testing of the implementation is currently in progress. 

15. SUBJECT TERMS
Reduced Physics Models, Geant4, CEASE 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT 

18. NUMBER
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON
Adrian Wheelock 

a. REPORT
Unclassified 

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified Unlimited 54 

19b. TELEPHONE NUMBER (include area 
code)

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. 239.18



This page is intentionally left blank. 

Approved for public release; distribution is unlimited.



Table of Contents 

1. INTRODUCTION ....................................................................................................... 1

2. BACKGROUND ......................................................................................................... 1

3. METHODS, PROCEDURES, and ASSUMPTIONS .................................................. 7

  3.1. Quadrature Methods.................................................................................................. 7 
  3.2. GBFP Discrete Cross-section Generation ................................................................. 9 
  3.3. GBFP Hybrid Cross-Section Generation ................................................................ 13 
  3.4. Implementation of the GBFP Models in Geant4 Test Code ................................... 16 
4. RESULTS AND DISCUSSION ................................................................................ 18

  4.1. CEASE-like Problem .............................................................................................. 21 
  4.2. Angular Deflection Distributions ............................................................................ 24 
  4.3. Energy-Loss Spectra ............................................................................................... 31 
  4.4. Dose-Depth Curves ................................................................................................. 33 
  4.5. Two-Dimension Dose Deposition........................................................................... 36 
  4.6. Reflection and Transmission Fractions ................................................................... 39 
5. CONCLUSIONS ....................................................................................................... 42

REFERENCES ..................................................................................................................43 
LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ....................................44 

i 

Approved for public release; distribution is unlimited.



List of Figures 

Figure 1: One-Dimension Slab Problem Schematic. .................................................................. 19 

Figure 2: CEASE Particle Telescope Schematic. ........................................................................ 21 

Figure 3: Reflected Energy Spectrum (a) and Relative Difference (b) for Electron Pencil 
Beam With Power Law Energy Distribution in 150 Microns of Silicon. .................................. 22 

Figure 4: Dose (a) and Relative Difference (b) for Electron Pencil Beam With Power Law 
Energy Distribution in 150 Microns of Silicon. ........................................................................... 22 

Figure 5: Dose (a) and Relative Difference (b) for Electron Pencil Beam With Power Law 
Energy Distribution in 500 Microns of Silicon. ........................................................................... 23 

Figure 6: Transmitted Angular Distributions for 100-keV and 10000-keV Electrons in 
Silicon, Copper, and Gold Slabs with Thickness of One Step. .................................................. 25 

Figure 7: Comparison of GBFP and Benchmark Transmitted Angular Distributions using 
(a) Discrete and (c) Hybrid and the Relative Differences for (b) Discrete and (d) Hybrid for 
100-keV Electrons in Silicon. ........................................................................................................ 26 

Figure 8: Comparison of GBFP and Benchmark Transmitted Angular Distributions using 
(a) Discrete and (c) Hybrid and the Relative Differences for (b) Discrete and (d) Hybrid for 
10000-keV Electrons in Silicon. .................................................................................................... 27 

Figure 9: Reflected Angular Distributions for 100-keV and 10000-keV Electrons in Silicon, 
Copper, and Gold Slabs with a Thickness of One Step. ............................................................. 28 

Figure 10: Comparison of GBFP and Benchmark Reflected Angular Distributions using 
(a) Discrete and (c) Hybrid and the Relative Differences for (b) Discrete and (d) Hybrid for 
100-keV Electrons in Silicon. ........................................................................................................ 29 

Figure 11: Comparison of GBFP and Benchmark Reflected Angular Distributions using 
(a) Discrete and (c) Hybrid and the Relative Differences for (b) Discrete and (d) Hybrid for 
10000-keV Electrons in Silicon. .................................................................................................... 30 

Figure 12: Reflected Energy-Loss Spectra (a) and Relative Difference (b) for 100-keV 
Electrons in Gold............................................................................................................................ 31 

Figure 13: Transmitted Energy-Loss Spectra (a) and Relative Difference (b) for 100-keV 
Electrons in Gold............................................................................................................................ 32 

Figure 14: Transmitted Energy-Loss Spectra (a) and Relative Difference (b) for 10000-keV 
Electrons in Gold............................................................................................................................ 32 

ii 

Approved for public release; distribution is unlimited.



Figure 15: Analog Dose Profile for 100-keV Electrons in Gold Slab with a Thickness of One 
Step.  ................................................................................................................................................ 33 

Figure 16: Analog Dose Profile for 10000-keV Electrons in Gold Slab with a Thickness of 
One Step. ......................................................................................................................................... 34 

Figure 17: Dose Profiles (a) and Relative Difference (b) for 100-keV Electrons in Gold. ...... 34 

Figure 18: Dose Profiles (a) and Relative Difference (b) for 10000-keV Electrons in Gold. .. 35 

Figure 19: Two-Dimension Dose Deposition Problem Schematic. ............................................ 36 

Figure 20: Dose Deposition Benchmark for 250-keV Electrons in Silicon Cube Gold with 
Insert.  ............................................................................................................................................. 36 

Figure 21: Dose Deposition for 250-keV Electrons in Silicon Cube With Gold Insert Using 
(A) GBFP 1 Discrete Angle, 1 Discrete Energy, (b) Geant4 Default Physics with 0.04 range 
Factor, (c) GBFP 8 Discrete Angles, 1 Discrete Energy, and (d) Geant4 Default Physics 
with 0.004 range factor. ................................................................................................................. 37 

Figure 22: The Fraction of Particles Reflected (a) and the relative difference for (b) Single-
Angle, Single-Energy DCS, (c) Single-Angle, Analog Inelastic DCS, and (d) Four-Angle, 
Analog Inelastic DCS. .................................................................................................................... 40 

Figure 23: The Fraction of Particles Transmitted (a) and the relative difference for (b) 
Single-Angle, Single-Energy DCS, (c) Single-Angle, Analog Inelastic DCS, and (d) Four-
Angle, Analog Inelastic DCS. ........................................................................................................ 41

iii 

Approved for public release; distribution is unlimited.



List of Tables 

Table 1: Moments of the Screened Rutherford Analog DCS .................................................... 10 

Table 2: Non-classical Recurrence Coefficients for Example Problem .................................... 11 

Table 3: Example Discrete Cross-Section Before Regularizing ................................................ 11 

Table 4: Example Discrete Cross-Section After Regularizing ................................................... 11 

Table 5: Ratio of Wall Time for Analog Simulation to Wall Time for GBFP Simulation. ..... 19 

Table 6: Ratio of Wall Time for Analog Simulation to Wall Time for GBFP Simulation 

Continued........................................................................................................................................ 20 

iv

Approved for public release; distribution is unlimited.



1. INTRODUCTION

The following sections present work completed under the UNM/AFRL research grant FA9453-
11-1-0276 since May 2013. During this time period, the Generalized Boltzmann Fokker-Plank 
(GBFP) advanced physics models were expanded to include both discrete and hybrid differential 
cross section (DCS) models. In addition, the analog models that are the basis of the GBFP 
physics were expanded to include the following DCSs: the screened Rutherford elastic scattering 
DCS, the partial wave expansion elastic scattering DCS, the Rutherford inelastic DCS, and the 
Möller inelastic DCS. Tools for tallying quantities like dose, charge deposition, transmission and 
reflection, angular distributions, energy spectra, and lateral and longitudinal distributions were 
implemented and tested. Finally, a test suite including a wide variety of problems was 
completed. The remainder of the paper will cover background material, discuss the methods 
utilized, and present results obtained from the test suite. 

2. BACKGROUND

Solution to the Boltzmann transport equation for electrons requires information about the 
interactions that an electron can undergo. This information is captured by the DCSs and 
describes the probability that a particle will scatter through some angle or lose some energy to 
the medium. In addition, the total cross section is obtained from the DCS and characterizes the 
length scale of the physics. For electrons, the mean free path (MFP) or the inverse of the total 
cross section is extremely small, so particles suffer thousands of collisions while slowing down. 
Also, the DCSs are peaked about small changes in the state of the electron. As a result, analog 
Monte Carlo is extremely computationally inefficient for electrons above a few hundred keV.  

Approximate methods were developed to alleviate the computational effort required for analog 
Monte Carlo simulation of electrons. However, methods like condensed history (CH) introduce 
error on the order of the fixed distance traveled by the electron between collisions or the step and 
CH requires special boundary crossing algorithms to mitigate additional error incurred at 
material interfaces. The GBFP method is an approximate method, but unlike CH, the GBFP 
method is a single-event Monte Carlo method. That is, the distance between collisions or the step 
is exponentially distributed, so no boundary crossing algorithms are required. In addition, the 
GBFP method introduces moment-preserving, approximate DCSs with systematically 
controllable accuracy by preservation of more moments.  

Like analog Monte Carlo, the GBFP physics models require a total cross section and a DCS for 
each interaction simulated. The cross sections are used to sample distance to collision, scattering 
angle, and energy-loss. Not only are the approximate DCSs critical to the GBFP method, but also 
the analog DCSs are required to construct the approximate DCSs using moments of the analog 
DCSs. Therefore, some attention is given to the DCSs currently implemented. 

The predominant interactions that are considered in this work are elastic scattering with target 
nuclei and inelastic scattering with orbital electrons. Elastic scattering is a Coulombic interaction 
between primary electrons and target nuclei that can result in a change in the primary electron’s 
direction (energy loss due to elastic scattering is negligible). Inelastic scattering is a Coulombic 
interaction between the primary electrons and the atomic electrons where energy from the 
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primary electrons is transferred to the atomic electrons (change in direction due to inelastic 
scattering of the primary electrons is neglected). Currently, elastic scattering models 
implemented include the screened Rutherford DCS [1] and the partial-wave expansion DCS [2]. 
The screened Rutherford DCS is a widely applicable, but simplified model. The benefit of using 
the screened Rutherford cross section is that it is in a continuous form or 

 ,     (2.1) 

where  is the deflection cosine,  is the screening parameter, and is the 
material constant. The screening parameter is given by 

,     (2.2) 

where  is the atomic number of the target nucleus and is the particle energy per 
rest mass energy. For electrons, MeV. The material constant is given by 

,     (2.3) 

where is the atomic mass,  cm is the classical electron radius,  is 
the material density, and is Avogadro’s number. In contrast to the screened Rutherford DCS, 
the partial-wave DCSs are given by 

, (2.4) 

where 

(2.5) 

and 

. (2.6) 

It is beyond the scope of this report to discuss the process of calculating the partial-wave DCS 
(see ELSEPA [2]); however, it is important to note that there is no analytical form of eq. 2.4. 
Therefore, computer codes are used to generate partial-wave DCS libraries. The motivation for 
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using the partial-wave DCS is because it is the most accurate representation of elastic scattering 
currently available. It also provides an additional application to demonstrate the effectiveness 
and flexibility of the GBFP method. That is, the GBFP method does not depend on the form of 
the DCS, rather the moments. Therefore, DCSs can be continuous or discrete so long as moments 
of the DCS can be accurately calculated.  

There are two analog inelastic scattering models currently implemented in the Geant4 [4] test 
code. The inelastic DCS models currently implemented includes the Rutherford DCS [3] given 
by 

, (2.7) 

where the material constant, , is  

, (2.8) 

, is the particle velocity per c (c being the speed of light), and  is the energy 
transferred from the incident particle to the atomic electron. The more accurate Möller [3] DCS 
was also implemented and is given by 

. (2.9) 

Given the aforementioned DCS models, the goal of the Monte Carlo method is to solve the 
Boltzmann transport equation for the selected physics by simulating the particle behavior 
according the DCSs. For example, the Boltzmann transport equation for electrons that can 
undergo the interactions detailed above is  

 . (2.10) 

In the eq. 2.10 the spatial dependence is implied for compactness, but in the following definitions 
the spatial dependence is explicit: 

    Angular flux  
 Macroscopic elastic scattering cross section 

  Macroscopic inelastic scattering cross section 
      Total macroscopic interaction cross section 

where is position vector, E is the particle energy, and  the direction of the particle. The 
prime notation on E and  corresponds to the particles energy or direction before a collision 
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occurs. The left-hand side of eq. 2.10 corresponds to particles leaving the phase space or particle 
losses and the right-hand side corresponds to particles entering the phase space or particle gains. 
The first loss term, 

Leakage, 

accounts for particles leaking or leaving the differential volume. The second loss term 

Outscatter, 

accounts for outscatter or particles leaving the energy or angular space by changing direction or 
energy. The first gain term, 

Elastic Inscatter, 

accounts for particles scattering into the angular phase space. The second gain term, 

Inelastic Inscatter, 

accounts for particles scattering into the energy phase space. According to eq. 2.10 and a 
corresponding boundary condition or fixed source, a source particle is created with a position, 
energy, and direction. Next, the particle streams or moves a distance to a collision site. This 
process is sampled according to the following probability distribution function   

, (2.11) 

where s is the distance to collision. Given a distance to collision, the particle is moved to a 
collision site. At the collision site, the collision type is randomly sampled according to the 
probability of the respective collision type. The probability of an elastic scatter is the ratio of the 
total elastic scatter cross section, , to the total interaction cross section, , or 

, (2.12) 

and the probability of an inelastic scatter is the ratio of the total inelastic scatter cross section, 
, to the total interaction cross section, , or 

. (2.13) 
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Given the collision type, the collision outcome is determined by sampling the corresponding 
DCS. This is accomplished by direct or rejection sampling techniques. For example, the screened 
Rutherford elastic scattering DCS is invertible, so a direct technique is used or  

. (2.14) 

where  is a random number sampled uniformly between zero and one. However, the Möller 
DCS is not invertible so a rejection technique must be used. Rejection techniques are well 
documented for the Möller DCS (see Geant4 Physics Reference Manual [5]) and not summarized 
here because it is an involved process. Regardless of the technique, the outcome is the same. 
That is, an energy loss is sampled according to the physics governing the collision type or the 
DCS. This process of sampling distance to collision, collision type, and collision outcome is 
repeated for each source particle until all source particles are complete. During the simulation 
process, tallies of interest are accumulated. As previously mentioned, we are interested in 
quantities like dose, charge deposition, transmission and reflection, angular distributions, energy 
spectra, and lateral and longitudinal distributions. To tally the various quantities of interest, a 
running sum is accumulated as the particles tranverse the medium. For example, in a one-
dimensional slab, dose in  per source particle in the ith cell is 

, (2.15) 

where  is the dose deposited in the ith cell by the jth source particle, is the width of the ith 
cell, and  is the total number of source particles. 

This simple description of the Monte Carlo algorithm is valid for analog or single-event Monte 
Carlo where collision sites are exponentially distributed. One significant difference between the 
GBFP method and other approximations is that the GBFP method is a single-event method. 
Therefore, pre-existing single-event Monte Carlo algorithms can be used, so no code 
modifications are necessary to use this approximation. That is because the GBFP method simply 
relies on approximate DCSs. There is a very subtle difference between the transport equation 
solved using the GBFP method and the analog transport equation in eq. 2.10. After substituting 
the approximate cross sections the transport equation becomes 

 . (2.16) 

where  implies that the cross section is approximate. Notice that the form of operators in eq. 
2.10 and eq. 2.16 are the same. For this reason, many of the issues encountered when using CH 
methods, like boundary crossings and step-length limitations, are avoided when using the GBFP 
method. Unlike CH, the transport equation remains unchanged. The only question that remains is 
how does one construct a GBFP DCS such that a solution eq. 2.16 is a good approximation of the 
analog solution. 
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To do so, Lewis theory [6] is utilized. Lewis theory provides a relationship between Legendre 
moments of the elastic scattering DCS and space-angle moments of the solution. That is, if an 
approximate DCS preserves a finite number of Legendre moments, , of the analog DCS, then it 
is possible to preserve  space-angle moments of the analog solution, where 
 

 , (2.17) 

 
are the Legendre moments of the analog elastic scattering DCS. The space-angle moments of the 
solution are 

 . (2.18) 

 
Lewis theory is only valid in an infinite medium, but it does emphasize the relationship between 
moments of the DCS and moments of the solution. Therefore, the GBFP DCSs are constructed 
such that they preserve moments of the analog DCSs. To do so, we write down a system of 
equations, 
 
 ,   (2.19) 
 
where 
 

 . (2.20) 

 
In eq. 2.19,  is determined by the number of unknown parameters used to construct the GBFP 
DCS. For both the discrete DCS and the hybrid DCS, there are a total of points and weights 
that must be determined. Thus, for the system in eq. 2.19. As an example, we take a 
discrete DCS with the following form 
 

 , (2.21) 

 
where  are the discrete points and  are the corresponding weights. Substituting eq. 2.21 into 
eq. 2.19 gives 
 
 , .  (2.22) 
 
We now have a system of points and weights that we can solve such that the first moment 
and higher order moments of the discrete DCS are equivalent to the moments of the analog DCS. 
Therefore, the zeroith moment or the total cross section is not preserved. The result is a smoother 
cross section with a longer mean free path (MFP), which are both features of the analog DCS 
that result in substantial computational cost for analog Monte Carlo simulations. A smoother 
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DCS with a longer MFP that preserves moments of the analog DCS is the key to accurately and 
efficiently approximating eq. 2.10. 
 
The goal of the GBFP method is to utilize approximate DCSs that are smoother and have longer 
MFPs. However, there is a certain level of detail that is required to obtain these ideal DCSs. The 
following section provides a thorough discussion of the process of obtaining various GBFP 
DCSs. 

3. METHODS, PROCEDURES, AND ASSUMPTIONS 

The current implementation of the GBFP method allows for two approximate DCSs: discrete and 
hybrid DCS models. The discrete DCS is a set of discrete points and weights. Whereas, the 
hybrid DCS is a combination of a smooth tail and a discrete peak. Both DCSs require calculation 
of discrete points and weights, so the following sections discuss the general methods used to 
generate the DCSs and the details specific to the discrete and hybrid DCSs. In addition, Geant4 
implementation details relevant to the work completed to date are presented. 

3.1. Quadrature Methods 

In section 2, the system of equations in eq. 2.21 demonstrates the GBFP concept, but that system 
is not directly invertible due to numerical instabilities. Therefore, we turn to a method typically 
used to generate quadrature sets as an alternative approach. The aim of Gaussian quadrature is to 
obtain the points, , and weights, , such that 
 

             (3.1) 

 
is equivalent for polynomials, , of order and less. To obtain the points and weights 
one must generate  polynomials that are orthogonal with respect to the weight function, . 
The polynomials are then used to obtain the points and weights. That is, the zeros of the order  
polynomial are the points and the weights are given by 
 

 
.
 (3.2) 

 
To generate orthogonal polynomials, the recurrence coefficients, , satisfying 
 
  (3.3) 
 
are required. In the context of this discussion, there are two types of orthogonal polynomials, 
classical and non-classical. Classical polynomials are orthogonal with respect to classical weight 
functions (examples include Legendre, Jacobi, Chebyshev, Laguerre, Hermite, and so on). There 
are typically well-known recurrences and recurrence coefficients for classical orthogonal 
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polynomials. That is, computation of the recurrence coefficients is unnecessary, so generating 
Gauss-Lengendre quadrature, Gauss-Jacobi quadrature, and so forth is just a matter of 
determining the points and weights from the known recurrence coefficients. However, it can be 
advantageous to generate quadrature sets corresponding to non-classical weight functions. 
Therefore, an additional step is required where the recurrence coefficients are obtained for the 
polynomials that are orthogonal with respect to the non-classical weight function.  
 
It is possible to obtain the recurrence coefficients for non-classical orthogonal polynomials using 
the modified Chebyshev Algorithm (MCA). The MCA is derived by Gautschi [7] and is a 
mapping procedure for mapping the recurrence coefficients of classical orthogonal polynomials 
to the recurrence coefficients non-classical orthogonal polynomials with modified moments 
given by 
 

 , (3.4) 

 
where  is a classical orthogonal polynomial of order . Given the modified moments and 
the recurrence coefficients of classical orthogonal polynomials, the MCA returns the recurrence 
coefficients of non-classical orthogonal polynomials that are used to generate the corresponding 
quadrature set. The MCA is typically used when integrating specialized functions that cannot be 
factored into a classical weight function and a polynomial. However, the system encountered 
when generating a GBFP DCS can be recast into a Gaussian quadrature problem for a non-
classical weight function.  
 
Before moving to the details of applying the MCA to the GBFP method, we will write down the 
final step in generating the points and weights. There are a number of methods for obtaining the 
discrete points and weights, but the method used in this work is due to Golub and Welsch [8]. 
Wilf recognized that the Gaussian quadrature system could be written in terms of an eigenvalue 
problem. The important result is that the zeros of the order  polynomial are equivalent to the 
eigenvalues of the Jacobi matrix 
 

  , (3.5) 

 
where  are the recurrence coefficients of the orthogonal polynomials (classical or non-

classical). The first entry of the  eigenvector, , squared corresponds to the  weight or 
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.   (3.6) 

Finally, it is important to note that the GBFP method requires Gauss-Radua quadrature where 
one of the points is constrained to be the upper or lower bound of the integral in eq. 3.1. Given 
this constraint, the process of obtaining the correct Jacobi matrix is outlined by Golub [9]. The 
important results are summarized below. We wish to determine a polynomial such that 

 or , where a and b are the limits of the integral in 3.1. This implies that 

(3.7) 

or 

. (3.8) 

Now, the Jacobi matrix is expanded from an  to an  matrix with the constraint that 
one of the points, , is a or b. Given a method for obtaining discrete points and weights 
corresponding to a non-classical weight function, it is possible to recast the GBFP cross section 
construction problem into a similar quadrature problem of a non-classical weight function. 

3.2. GBFP Discrete Cross-section Generation 

We can rewrite eq. 3.1 in the following form: 

. (3.9) 

We would like to satisfy this equation for polynomials of order  or less. Specifically, we 
would like to satisfy the above equation for , where  is a Legendre 
polynomial. Since eq. 3.9 holds for all polynomials, the same will be true if  or 

. (3.10) 

Given the discussion in the previous section, it should be clear that eq. 3.9 and 3.10 can be 
satisfied and the process of mapping the known recurrence coefficients to those of non-classical 
recurrence coefficients using the MCA is a viable approach. These particular non-classical 
recurrence coefficients correspond to polynomials that are orthogonal with respect to the DCS 
that is used as a weight function. After applying the Golub and Welsch algorithm to these 
recurrence coefficients, the corresponding points and weights will satisfy eq. 3.10 for 

. That is, the first moments of the DCS are preserved. However, as discussed, 
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the goal is to specifically avoid preservation of the zeroith moment, because the zeroith moment 
gives the total cross section or the MFP causing computational inefficiency. This is the 
motivation for using the Radau method discussed above. By requiring one discrete point is equal 
to unity, we generate a deflection cosine that corresponds to a non-interaction ( ). 
A scattering angle of zero is equivalent to not interacting. Since the analog DCS is peaked about 
non-interaction, we seek to remove this feature from the GBFP DCSs. After generating the 
discrete points and weights only the points not equal to unity are kept.  

To make this discussion clear, we will provide an example of the process of constructing a GBFP 
elastic scatting DCS. First, we must select a few parameters. We will demonstrate the process of 
generating 4 discrete points and weights for a 1 MeV electron in Gold with the following 
parameters: 

• Z=79
• A=196.97 g/mol
• =19.33 g/cc
• =1e-4
• N=4

To generate polynomials that are orthogonal to the screened Rutherford DCS we need 
moments given by 

. (3.11) 

There are several methods that can be used to generate these moments accurately. One is the 
Spencer recurrence [10]. This recurrence is only good for the screened Rutherford DCS over the 
full range. We implemented a more general method such that any elastic scattering DCS for the 
full or partial range is possible. This method simply uses adaptive quadrature to evaluate the 
integral in eq. 3.11 and gives the following for the first 10 moments: 

Table 1: Moments of the Screened RutherfordAnalog DCS 

 (1/cm)  (1/cm) 

0 13222.95284269771 5 12993.68379391062 
1 13200.72491556212 6 12920.77698622844 
2 13164.40260046155 7 12841.46869195591 
3 13116.67842732473 8 12756.48220266539 
4 13059.33200551864 9 12666.43977610700 

We must now generate the first  recurrence coefficients for monic Legendre polynomials. 
The coefficients are given by 
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, (3.12) 

where is not used and can be set to an arbitrary value. Given , , and  we can now 
generate the non-classical recurrence coefficients  and . The result is 

Table 2: Non-classical Recurrence Coefficients for Example Problem 

0 0.9983189891546911 arbitrary 
1 -0.004950428124079198 0.0004072459551613386 
2 -0.002528000016159826 0.3308498723933296 
3 -0.001661056221544444 0.2655511190282964 
4 -0.001207307704623406 0.2564056575870433 

The coefficients in table 2 are passed to the Radau algorithm and the discrete points and weights 
are generated. In table 3 and table 4, the discrete points and weights are given before and after 
regularizing or canceling the non-interaction point respectively.  

Table 3: Example Discrete Cross-Section Before Regularizing 

1 -0.8253336745219344 0.3542588039339951 
2 -0.1926588357286153 1.46098457679131 
3 0.5530858576077967 8.8112540880515 
4 0.974594146260808 625.8776637056218 
5 0.9999999999999994 12586.44868152331 

Table 4: Example Discrete Cross-Section After Regularizing 

1 -0.8253336745219344 0.3542588039339951 
2 -0.1926588357286153 1.46098457679131 
3 0.5530858576077967 8.8112540880515 
4 0.974594146260808 625.8776637056218 
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The definition of the total cross section is the sum of the weights or 13222.9528 (1/cm) prior to 
regularizing. After regularizing, the total cross section is 636.5042 (1/cm). This means that the 
MFP associated with the regularized cross section is about 21 times longer than the analog MFP 
or on average a 1 MeV analog electron in gold suffers 21 times more collisions than a GBFP 
electron. 

So far, we have discussed the elastic scattering DCS construction using quadrature methods. 
However, these methods are only valid over [-1,1]. Therefore, construction of a GBFP inelastic 
scattering DCS requires additional steps. It is possible to determine a linear mapping between , 
the dependent variable for inelastic scattering, and , the dependent variable for elastic 
scattering. That is, the following is true for the elastic and inelastic scattering DCSs: 

. (3.13) 

Given a mapping, one can compute Legendre moments of the mapped inelastic scattering DCS. 
These moments are then used to generate points and weights on [-1,1] and then the points and 
weights are mapped back to  space. This process is outlined below.  

First, we must determine a mapping. If we assume 

(3.14) 

and require that  and , we determine m and b such that 

. (3.15) 

Given this mapping, we can now obtain a relationship between energy-loss moments, , and 
Legendre moments of a pseudo elastic scattering DCS or . We would like to rewrite the right 
hand side of the following equation in terms of energy loss moments 

. (3.16) 

From our mapping, we know that  and we can rewrite  as 

, (3.17) 

where 

. (3.18) 
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Equation 3.16 becomes 

. (3.19) 

Then we substitute the expression for and  and change the limits of 
integration, which gives 

(3.20) 

or 

, (3.21) 

where 

. (3.22) 

are the energy-loss moments of the inelastic DCS. 

The procedure for generating a GBFP inelastic DCS is the same as for the elastic DCS except we 
start with energy-loss moments. After mapping the moments, we can use the same procedure 
outlined earlier in this section. This will result in points that are on [-1,1] and we simply map 
those points back to Q space using eq. 3.15 to complete the process. 

3.3.  GBFP HYBRID CROSS-SECTION GENERATION 

Generation of the hybrid DCS requires the same procedure discussed above, but the interval over 
which the discrete points are generated is restricted to  for elastic scattering and 

 for inelastic scattering. The remaining interval,  and , is 
represented exactly by the respective analog DCS. The first parameter that must be determined is 
the cut value. The cut value is driven by the underlying principle of the hybrid DCS. That is, by 
representing the catastrophic collisions (those resulting in large-angle deflection and large energy 
loss) with the analog DCS, discrete artifacts are mitigated. Therefore, selection of the cut should 
relate to how much of the GBFP DCS is represented by the analog DCS. To do so, we select the 
cut such that total cross section corresponding to the smooth portion of the GBFP DCS, , is 
some fraction of the analog total cross section or 
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.
(3.23) 

We then solve for the cut by evaluating  or, for screened Rutherford elastic scattering, 

.
(3.24) 

This gives 

.
(3.25) 

If is unity, then the hybrid DCS goes over to the analog DCS. If N is large,  and the 
hybrid DCS goes over to discrete DCS. The cut value can be used to control the speed and 
accuracy of the hybrid model and must be determined by the applicable analog DCS.  

Given a cut value, the moments used to obtain discrete points and weights for elastic scattering 
become 

(3.26) 

and for inelastic scattering 

. (3.27) 

The procedure for generating elastic scattering DCSs must change to incorporate a mapping from 
 to  before utilizing the MCA. A process similar to what was required for inelastic 

scattering is applied. Rather than going through the derivation of the mapping, we will simply 
provide the result. First, the mapping for the moments is 

, (3.28) 

where  is given in eq. 3.26,  is given in eq. 3.18, and  is 

. (3.29) 

If  and , the linear mapping from  to  is 
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. (3.30) 

The procedure for generating discrete inelastic scattering DCSs remains the same except that the 
mapping changes to 

(3.31) 

and the moments supplied to the MCA are mapped from the moments in eq. 3.27.  
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3.4.  IMPLEMENTATION OF THE GBFP MODELS IN GEANT4 TEST 
CODE 

Geant4 is a toolkit for the simulation of the passage of particles through matter. Its areas of 
application include high energy nuclear and accelerator physics, medical physics, and space 
physics [4]. In general, use of Geant4 entails developing an application with at least three 
mandatory user-defined classes that are inherited from the base classes named 
G4VDetectorConstruction, G4VPhysicsList, and, G4VPrimaryGeneratorAction. Creation of a 
G4VDetectorConstruction inheriting classes is used to set the problem geometry. In this 
inheriting class, the dimensions and material properties for the model are set. A G4VPhysicsList 
inheriting class is used to set the various physics processes that are applicable for the particles 
required by the simulation. In this inheriting class, the processes and the associated models are 
created and applied to the appropriate particles. Finally, creation of a 
G4VPrimaryGeneratorAction inheriting class is used to define the particle source. The position, 
energy, particle type, and direction are set in this class (distributions for each of these parameters 
can be used as well). It is at the level of processes and models where the details of the 
implementation of the GBFP method are of interest. A process and model was written for each 
GBFP DCS (Discrete and Hybrid) and for each interaction (elastic and inelastic). In addition, a 
GBFP DCS generation tool was written and used by the various models. 

The physics processes determine when and how to apply the physics (at the beginning of the 
step, along the step, or at the end of a step). For example, all of the physics processes created for 
the test code are single event, so the processes are applied at the end of a step. Depending on the 
type of process (elastic or inelastic) the process samples an angular deflection or energy loss and 
then updates the state of the particle accordingly. The physics models are used to define how to 
sample the collision outcome and the total cross section for that particular interaction. In 
addition, the data or the GBFP DCSs are prepared in the physics models before the run begins. A 
GBFP DCS and total cross section is generated for each element in the model at the time the 
physics models are initialized. However, one could generate a GBFP DCS database rather than 
preparing the data at the time of the run.  

The discrete GBFP models are contained in a single class. However, the hybrid GBFP model is a 
combination of a soft collision model and a hard collision model. The soft collision model 
corresponds to the discrete portion of the DCS and has the same structure as the discrete GBFP 
models. The hard collision model corresponds to the smooth portion of the DCS and has the 
same structure as the analog DCS models. 

Each of the following GBFP physics model and process classes are currently implemented: 

• AnalogScreenedRutherfordElasticScatteringModel
• AnalogScreenedRutherfordElasticScatteringProcess
• AnalogMottElasticScatteringModel
• AnalogMottElasticScatteringProcess
• AnalogRutherfordInelasticScatteringModel
• AnalogRutherfordInelasticScatteringProcess
• AnalogMöllerInelasticScatteringModel
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• AnalogMöllerInelasticScatteringProcess
• DiscreteScreenedRutherfordElasticScatteringModel
• DiscreteScreenedRutherfordElasticScatteringProcess
• DiscreteMottElasticScatteringModel
• DiscreteMottElasticScatteringProcess
• DiscreteRutherfordInelasticScatteringModel
• DiscreteRutherfordInelasticScatteringProcess
• DiscreteMöllerInelasticScatteringModel
• DiscreteMöllerInelasticScatteringProcess
• HybridSoftScreenedRutherfordElasticScatteringModel
• HybridSoftScreenedRutherfordElasticScatteringProcess
• HybridSoftMottElasticScatteringModel
• HybridSoftMottElasticScatteringProcess
• HybridSoftRutherfordInelasticScatteringModel
• HybridSoftRutherfordInelasticScatteringProcess
• HybridSoftMöllerInelasticScatteringModel
• HybridSoftMöllerInelasticScatteringProcess
• HybridHardScreenedRutherfordElasticScatteringModel
• HybridHardScreenedRutherfordElasticScatteringProcess
• HybridHardMottElasticScatteringModel
• HybridHardMottElasticScatteringProcess
• HybridHardRutherfordInelasticScatteringModel
• HybridHardRutherfordInelasticScatteringProcess
• HybridHardMöllerInelasticScatteringModel
• HybridHardMöllerInelasticScatteringProcess
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4. RESULTS AND DISCUSSION

The following sections present results obtained since the last reporting period. Namely, the more 
interesting results from the test suite are highlighted. Each of the following items are discussed in 
remaining subsections 

• CEASE-like problem
• Angular deflection distributions,
• Energy-loss spectra,
• Dose-depth curves,
• Two-dimension dose deposition,
• Reflection and transmission fractions.

The first item, “CEASE-like problem”, is a demonstration of the GBFP method in one-
dimension slabs with thicknesses on the order of the CEASE (compact environmental anomaly 
sensor) silicon detectors. In addition, a source with a power law energy distribution was tested on 
these problems, since power law spectra are encountered in the radiation belts. 

The remaining items are results from an extensive test suite. The test suite was used to find 
programming errors and to characterize the performance of the GBFP method for various 
problem parameters (e.g. particle energy, material type, result type, and so on). 

All of the problems in the test suite have an associated length. For finite medium problems, the 
associated length gives a measure of the thickness of the medium. The length tested is related to 
a condensed history step-size. The definition of the step-size used in this paper and in many 
condensed history codes is 

,     (4.1) 

where  is the initial energy of the particle at the beginning of the step,  is the stopping 
power, and  

(4.2) 

is the energy of the particle at the end of the step. Therefore, a step-length is the distance traveled 
while slowing down from  to . This metric is used for presenting results because it 
provides a length scale that is consistent with condensed history. That is, the GBFP method must 
be effective at these lengths to be considered a viable alternative. Results were generated for 
slabs with thicknesses of one sub-step, one step, and 10 steps according to the schematic in fig. 
1. However, the quantities of interest vary from angular distributions to energy spectra and dose
deposition profiles.  
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Figure 1: One-Dimension Slab Problem Schematic. 

Since many of the following results were generated simultaneously, we report a single efficiency 
measure that provides a sense of the speed-ups achieved with the GBFP method. The following 
table gives the ratio of the wall time required for a GBFP simulation to the analog simulation. 
The tables indicate that there is a dependence on both the energy of the source particle and the 
level of accuracy of the approximation. For higher energy particles, the analog DCS is more 
peaked and the regularization process is much more significant. The resulting DCSs have longer 
MFPs for higher energy particles than for lower energy particles relative to the analog MFP. The 
other contributing factor impacting efficiency is the level of accuracy. The less accurate 
approximations are one to two orders of magnitude more efficient that the more accurate 
approximations. Ultimately, there is a clear trade-off between efficiency and accuracy. This 
poses an interesting optimization problem that will be addressed in future work. Regardless, it is 
clear that the GBFP method results in efficiency gains of one to two orders of magnitude over 
analog Monte Carlo. 

Table 5: Ratio of Wall Time for Analog Simulation to Wall Time for GBFP Simulation. 

Energy 
(keV) 

Approximation 
1 Angle, 
1 Energy 

2 Angles, 
1 Energy 

4 Angles, 
1 Energy 

8 Angles, 
1 Energy 

10 0 0 0 0 
50 2 2 1 1 
100 4 3 2 2 
500 22 12 6 4 
1000 40 21 10 6 
5000 178 89 42 19 
10000 381 196 90 41 
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Table 6: Ratio of Wall Time for Analog Simulation to Wall Time for GBFP Simulation 
Continued. 

Energy (keV) 

Approximation 
Hybrid 1 Angle 

1 Energy 

Hybrid 1 Angle 

 1 Energy 

Hybrid 1 Angle 

 1 Energy 

1 Angle, 
Analog 
Energy 

4 Angles 
 Analog 
Energy 

10 0 0 0 0 0 
50 1 2 2 2 1 

100 2 3 4 5 2 
500 2 5 13 17 6 

1000 2 6 17 26 9 
5000 2 6 24 51 26 
10000 2 6 25 60 38 
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4.1.  CEASE-LIKE PROBLEM 

Many of the results obtained from the test suite are for the most challenging problem in electron 
transport: a mono-energetic pencil beam incident on a thin slab. Pencil beams are difficult to 
resolve because they are localized in space, angle, and energy. Whereas, many sources 
encountered in real world problems are distributed in space, angle, and energy. The GBFP 
method is actually more accurate when simulating distributed sources. In addition, the GBFP 
method is more effective on thicker problems where the source particles suffer enough collisions 
to spread out in space, angle, angle and energy. We tested the GBFP method on slabs with 
thicknesses representative of the CEASE telescope silicon detectors (that is, 150 microns for dft 
and 500 microns for dbt seen in fig. 2 [11]). The CEASE is a small, lightweight, and low power, 
spacecraft instrument designed to measure the local space radiation environment and generate 
warnings of the space environment hazards of radiation damage, dielectric charging and single 
events effects [12]. The 150 micron slab is roughly 15 steps for a 100-keV electron. 

Figure 2: CEASE Particle Telescope Schematic. 

We look at both energy spectrum and dose profiles since both of these quantities are relevant to 
response function generation. Response functions are necessary for interpreting raw satellite 
data, so it is important that the response functions are accurate. One method for determining 
response functions is simulating the response of a detector using a Monte Carlo particle transport 
code like Geant4 or MCNP. Assuming an extremely accurate geometric model of the detector is 
used, inaccuracies can only be a function of the physics employed. For this reason, it is important 
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for any approximation to properly capture quantities like energy spectrum and dose while 
remaining efficient. We will show that under these conditions, the GBFP method performs very 
well. 

The following results were generated from simulations with a mono-directional, energy-
dependent source. The source energy is sampled from a power law distribution, since a power 
law is representative of energy spectra encountered in the radiation belts. The source energies 
range from 1-keV to 10000-keV. The first result presented is transmitted energy spectrum in the 
150-micron slab. As seen in the relative difference plot, each of the approximations are well 
within 5% of the benchmark.  

            (a) Spectra          (b) Relative Difference 

Figure 3: Reflected Energy Spectrum (a) and Relative Difference (b) for Electron Pencil 
Beam With Power Law Energy Distribution in 150 Microns of Silicon. 

Next we present one-dimensional dose distributions. As seen in figs. 4a and 4b, and in 5a and 5b, 
each of the approximations are within a few percent of the benchmark.  

             (a) Dose                                                    (b) Relative Difference 

Figure 4: Dose (a) and Relative Difference (b) for Electron Pencil Beam With Power Law 
Energy Distribution in 150 Microns of Silicon. 
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             (a) Dose                                                    (b) Relative Difference 

Figure 5: Dose (a) and Relative Difference (b) for Electron Pencil Beam With Power Law 
Energy Distribution in 500 Microns of Silicon. 

The single-angle, single-energy approximation is very efficient at nearly 400 times more 
efficient than analog. Moreover, this approximation is within sufficient levels of accuracy 
making it a viable option for dose calculations or response function generation.   
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4.2.  ANGULAR DEFLECTION DISTRIBUTIONS 

In this section, we present the angular distributions of electrons that are either transmitted or 
reflected. Though test cases were completed for slabs with varying thicknesses, we focus our 
attention on the results for slabs with thicknesses of one step and discuss the impact of the 
thinner and thicker slabs. For these particular problem types, a mono-energetic electron source 
normally incident on the left face of a slab at is simulated for source energies ranging from 
100-keV to 10000-keV in low-Z, medium-Z, and high-Z materials (Silicon, Copper, Gold). 
However, we only present the GBFP method in low-Z materials because low-Z targets are the 
most challenging. Both elastic scattering and inelastic scattering are simulated using the screened 
Rutherford DCS and the Möller DCS respectively, along with GBFP approximations of these 
DCSs. The quantities of interest are the angular distributions of reflected and transmitted 
particles.  

The benchmark solutions were obtained using the analog DCSs and are presented first to provide 
a sense of the physics. We begin with the transmitted angular distributions. In fig.  
6, the transmitted angular distributions in silicon, copper, and gold for 100-keV and 10000-keV 
electrons and for a slab thickness of one step are presented. The two energies presented are the 
upper and lower energies that were tested and capture the impact of the source energy on the 
angular distribution. For lower energy particles, the screened Rutherford elastic scattering DCS 
is less peaked about forward scattering. In fact, for low enough energies the screened Rutherford 
elastic scattering DCS is nearly isotropic. Therefore, the resulting transmitted angular 
distributions are effectively isotropic. This is because isotropic scattering rapidly spreads out the 
mono-directional beam in angle. For higher energy particles, the screened Rutherford elastic 
scattering DCS is highly peaked and therefore spreading of the beam occurs slower. This is 
shown clearly in fig. 6 as the most peaked distributions correspond to the 10000-keV source and 
the more isotropic distributions correspond to the 100-keV source.    

The anisotropy of the angular distributions depends on the peakedness of the DCS, but also on 
the number of collisions suffered by the particles. In thin slabs, most particles escape before 
suffering very many collisions and the resulting angular distributions are more peaked. In thick 
slabs particles suffer many more collisions and the initial beam is spread out in angle. However, 
the size of the slab is not the only mechanism that leads to a smoother angular distribution. For 
high-Z materials, the effect nuclear screening by the atomic electrons is stronger which leads to a 
larger average deflection cosine. That is, in high-Z materials, electrons scatter through larger 
angles on average than in low-Z materials causing additional spreading of the beam.  
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Figure 6: Transmitted Angular Distributions for 100-keV and 10000-keV Electrons in 
Silicon, Copper, and Gold Slabs with Thickness of One Step.  

These benchmarks indicate that the peakedness of an angular distribution is strongly dependent 
on the source particles initial energy and also dependent on the atomic number of the target. It 
can be difficult to resolve the more peaked distributions with a discrete GBFP DCS. While this is 
true for GBFP DCSs with only a few points and weights, it is possible to resolve the transmitted 
and reflected angular distributions with a higher order GBFP DCS. In figs. 7a, 7b, 7c, and 7d 
transmitted angular distributions and relative differences for 100-keV electrons in silicon 
generated using the GBFP discrete and hybrid DCSs are compared with the benchmark. It is 
important to note that angular distributions are differential quantities, so they are difficult to 
resolve using any approximation; especially, for thin slab problems on the order of a stepsize in a 
low-Z material. That is, this is a very strict test of the GBFP method and for thicker slabs or 
higher-Z materials the GBFP method improves in accuracy.  

The single-angle DCS results in severe discrete artifacts. Though a four-angle DCS dramatically 
improves the result, one must use eight points to completely smooth out the artifacts. The eight-
angle DCS is within 5% of the analog solution. An alternative to adding more angles to remove 
artifacts is the hybrid DCS. The hybrid DCSs presented are represented by a single point for the 
peak and the remainder of the DCS represented by the smooth analog DCS. We only look at a 
few hybrid DCSs to show the effect of the cut value. The most efficient hybrid DCS, , 
results in discrete artifacts. This is because the cut value is too far from unity and the discrete 
portion of the DCS dominates elastic scattering. By increasing the smooth total cross section by a 
factor of 10, or , the discrete artifacts are completely removed with exception of 

scattering angles that are roughly zero. We can refine the hybrid DCS further, where , 
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but there is only a subtle gain in accuracy for additional cost in efficiency. The impact of energy 
dependence is captured in the relative difference plot. For low energy particles, the addition of 
more discrete energies is almost negligible for the more accurate angular approximations. There 
is some smoothing of the discrete artifacts for the less accurate discrete angular approximations, 
but the artifacts remain. This indicates that a single-energy DCS may be sufficient when 
resolving angular distributions because the accuracy of the angular approximation is more 
important. The single-energy DCS preserves the first two moments, or stopping power and 
energy straggling, which seem to capture the majority of the energy-loss physics necessary for 
these cases.  

   (a) Comparison with Discrete (b) Discrete Relative Differences 

   (c) Comparison with Hybrid (d) Hybrid Relative Differences 

Figure 7: Comparison of GBFP and Benchmark Transmitted Angular Distributions using 
(a) Discrete and (c) Hybrid and the Relative Differences for (b) Discrete and (d) Hybrid for 

100-keV Electrons in Silicon. 

In figs. 8a, 8b, 8c, and 8d transmitted angular distributions for 10000-keV electrons in silicon 
generated using the GBFP discrete and hybrid DCS are compared with the benchmark. For 
higher energies, the impact of discrete artifacts is greater. Both a single-point and four-point 
DCS result in artifacts that overwhelm the angular distribution. At least an eight-point DCS is 
required to reduce the effects of the discrete artifacts. Some discrete artifacts are clear in the 
green curve for small scattering angles. However, even under this extreme test case, the addition 
of discrete energies smooth out these features. For the hybrid DCS the discrete artifacts are 
completely removed even with the most relaxed hybrid approximation. 
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   (a) Comparison with Discrete (b) Discrete Relative Differences 

   (c) Comparison with Hybrid (d) Hybrid Relative Differences 

Figure 8: Comparison of GBFP and Benchmark Transmitted Angular Distributions using 
(a) Discrete and (c) Hybrid and the Relative Differences for (b) Discrete and (d) Hybrid for 

10000-keV Electrons in Silicon. 

Although the discrete DCS can result in discrete artifacts, these artifacts are not nearly as 
significant when calculating integral quantities like dose, charge deposition, or transmission and 
reflection (see following sections). If non-integral quantities like angular distributions are 
necessary, the hybrid DCS is effective at mitigating the discrete artifacts while still achieving 
some efficiency gains over analog.   
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In fig. 9, the reflected angular distributions in silicon, copper, and gold for various electron 
energies and for a slab thickness of one step are presented. This figure shows a result opposite of 
the transmitted angular distributions. That is, lower energy particles are more likely to be 
reflected so the magnitude of the lower energy curves is greater. However, there is a consistency 
between the transmitted and reflected angular distributions. In both results, the higher energy 
angular distributions are anisotropic (tend to be peak at 10-20 when transmitted degrees or 110-
120 when reflected). However, the lower energy curves are nearly isotropic. 

Figure 9: Reflected Angular Distributions for 100-keV and 10000-keV Electrons in Silicon, 
Copper, and Gold Slabs with a Thickness of One Step.  

We now present results for the reflected angular distributions. In figs. 10a, 10b, 10c, and 10d 
reflected angular distributions for 100-keV electrons in silicon generated using the GBFP 
discrete and hybrid DCS are compared with the benchmark. Here, the discrete DCS results in 
artifacts for each of the DCSs tested. For 100-keV sources, a hybrid DCS with  is 
sufficient. It is likely that reflected particles typically result from hard collisions that are captured 
by the tail of the DCS or the smooth component. Therefore, any soft collisions that are captured 
by the single discrete angle do not contribute significantly to the solution and discrete artifacts 
are not present. 
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   (a) Comparison with Discrete (b) Discrete Relative Differences 

   (c) Comparison with Hybrid (d) Hybrid Relative Differences 

Figure 10: Comparison of GBFP and Benchmark Reflected Angular Distributions using (a) 
Discrete and (c) Hybrid and the Relative Differences for (b) Discrete and (d) Hybrid for 

100-keV Electrons in Silicon. 

In figs. 11a, 11b, 11c, and 11d, reflected angular distributions for 10000-keV electrons in silicon 
generated using GBFP discrete and hybrid DCSs are compared with the benchmark. Again, all of 
the discrete DCSs tested resulted in artifacts. For 10000-keV sources, a hybrid DCS with

 is also sufficient. The higher energy results are statistically noisier than the low energy 
results because very few high-energy particles are reflected. However, these results still gives a 
sense of the resulting reflected angular distributions when using a hybrid DCS. 

29 

Approved for public release; distribution is unlimited.



   (a) Comparison with Discrete (b) Discrete Relative Differences 

   (c) Comparison with Hybrid (d) Hybrid Relative Differences 

Figure 11: Comparison of GBFP and Benchmark Reflected Angular Distributions using (a) 
Discrete and (c) Hybrid and the Relative Differences for (b) Discrete and (d) Hybrid for 

10000-keV Electrons in Silicon. 
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4.3. ENERGY-LOSS SPECTRA 

In this section, we present the energy-loss spectra for electrons that are either transmitted or 
reflected. The energy-loss spectra discussed below were obtained for thin slab problems 
according to the schematic in fig. 1 with exception that we are now interested in energy 
dependence rather than angular dependence. If a particle is transmitted or reflected the quantity 
tallied is the initial energy of the particle less the final energy of the particle or the total energy 
deposited in the slab by the particle.  

We begin with the energy-loss spectra for 100-keV source particles. As a function of atomic 
number, the transmitted energy-loss spectra do not change significantly, so only gold results are 
presented. At lower energies, it may not be feasible to use a hybrid model because even with 

 there is still significant disagreement for small energy transfers. If the smooth total cross 
section is pushed to roughly the analog total cross section, efficiency gains will be negligible. 
Therefore, a mixture of GBFP physics and analog physics were tested.  

  (a) Energy-Loss Spectra                                  (b) Relative Difference 
Figure 12: Reflected Energy-Loss Spectra (a) and Relative Difference (b) for 100-keV 

Electrons in Gold. 

As seen in figs. 12a, 12b, 13a, and 13a, this approximation gives good agreement using only one 
discrete angle. The model using a single-angle DCS tends to underestimate the energy-loss 
spectra. Increasing the discrete elastic DCS to four angles results in very good agreement with 
the benchmark. One cause of this could be the relative size of the total cross section of elastic to 
inelastic scattering. That is, with a single-angle DCS, elastic scattering is no longer a dominant 
process. This results in more energy-loss collisions, so there are fewer particles transmitted 
because too many are deposited in the slab. Hence, the relative difference plots shows the 
spectrum is underestimated by about 5%. With the four-angle DCS, elastic scattering is better 
represented and the solution is improved greatly. In both cases, there are very few particles 
contributing beyond , so there are large oscillating relative differences for . 
Insufficient sampling rather than issues with the approximation causes the large oscillations. 
These results were not included in the relative difference plots. 
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  (a) Energy-Loss Spectra                                  (b) Relative Difference 
Figure 13: Transmitted Energy-Loss Spectra (a) and Relative Difference (b) for 100-keV 

Electrons in Gold. 

For 10000-keV source electrons, results are given in figs. 14a and 14b. We only present the 
transmitted energy-loss spectra because the reflected energy-loss spectra were overwhelmed with 
statistical uncertainty. For higher energy electrons, the elastic DCS has a greater impact on 
accuracy. In this case, the single angle model is very close to unity, so a majority of the particles 
are pushed through the slab with small losses in energy. Hence, the small energy losses are 
overestimated for the single-angle approximations. Refining the angular model improves the 
estimation of the small energy losses. Additionally, hybrid models are effective at higher 
energies.  

  (a) Energy-Loss Spectra                                  (b) Relative Difference 
Figure 14: Transmitted Energy-Loss Spectra (a) and Relative Difference (b) for 10000-keV 

Electrons in Gold. 
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4.4.  DOSE-DEPTH CURVES 

In this section, we present the dose-depth curves for electrons in gold. The dose-depth curves 
discussed below were obtained for thin slab problems according to the schematic in fig. 1 with 
exception that we are now interested in the spatial distribution of dose deposited throughout the 
slab. A key distinction between electrons and heavy charged particles is the Bragg peak or lack 
thereof. Since electrons more often undergo large-angle scattering, the Bragg peak is diffused 
out. Figures 15 and 16 present the dose-depth curves for 100-keV and 10000-keV electrons in 
gold.  

Figure 15: Analog Dose Profile for 100-keV Electrons in Gold Slab with a Thickness of One 
Step.  

In figs. 15 and 16, there is no Bragg peak. The only major distinction between the low-energy 
and high-energy problems is that the peak of the distribution is pushed further into the slab 
because high-energy electrons are significantly more likely to scatter in forward directions. 
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Figure 16: Analog Dose Profile for 10000-keV Electrons in Gold Slab with a Thickness of 
One Step. 

In figs. 17a and 17b, comparisons of the approximations with the benchmark for 100-keV source 
electrons are presented. Results for four different approximations are shown to capture the effect 
of dependence on angle and energy. For both single-angle approximations, the dose is 
overestimated in the first few cells and then underestimated throughout the remaining cells. 
Regardless, both single-angle approximations are within roughly 3% of the analog solution. 
Further, improvement in accuracy (within 1% of analog) is achieved by using a hybrid elastic 
scattering DCS or a mixture of a four-angle discrete DCS with an analog inelastic scattering 
DCS. The latter being more efficient.  

(a) Dose                                                     (b) Relative Difference 

Figure 17: Dose Profiles (a) and Relative Difference (b) for 100-keV Electrons in Gold. 
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In figs. 18a and 18b, comparisons of the approximations with the benchmark for 10000-keV 
source electrons are presented. Again, for both single-angle approximations, the dose is 
overestimated in the first few cells and then underestimated throughout the remaining cells. For 
the high-energy problem, the impact of inelastic scattering is slightly more significant. That is, it 
does not matter how accurate the elastic scattering DCS is if the inelastic scattering DCS is a 
single-energy point. In fact, the elastic scattering approximation can be relaxed to a four-angle 
DCS if an analog inelastic scattering DCS is used. From an efficiency standpoint, it is 
advantageous to use the four-angle discrete DCS with an analog inelastic scattering DCS rather 
than a hybrid angle, discrete energy approximation as it is 1.5-20 times more efficient depending 
on the hybrid DCS used. 

              (a) Dose                                                     (b) Relative Difference 

Figure 18: Dose Profiles (a) and Relative Difference (b) for 10000-keV Electrons in Gold. 
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4.5.  TWO-DIMENSION DOSE DEPOSITION 

In this section, two-dimension dose deposition results are presented. The problem setup is shown 
in fig. 19. For this simulation, 250-keV electrons are normal on a cube of silicon surrounding a 
small gold region. The electrons are normally incident on the bottom face of the cube and 
positioned at the interface of the two materials. There is a thin layer of silicon before the 
interface to ensure that the beam is spread slightly before reaching the interface. The dose is 
averaged over the x-dimension.  

Figure 19: Two-Dimension Dose Deposition Problem Schematic. 

The purpose of simulating this problem was to demonstrate the boundary crossing issues 
inherent to condensed history methods. 20 presents the analog benchmark. The actual structure 
of the gold region imbedded in the silicon shows up in the figure. Upon entering the gold region, 
electrons lose energy rapidly. Some electrons are reflected out of the gold and others never enter 
the gold region. These electrons that deposit energy in the silicon region do so at a slower rate 
and the benchmark shows a smoother gradient in the dose in the silicon region. 

 Dose (keV/g) 

Figure 20: Dose Deposition Benchmark for 250-keV Electrons in Silicon Cube Gold with 
Insert. 
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In fig. 21, a comparison of the GBFP method and the Geant4 default physics with the benchmark 
is presented. The two left plots are the two most efficient approximations. The GBFP 
approximation shows some clear discrete artifacts that are not present in the one-dimension 
results. Since the single-angle GBFP approximation only allows forward scattering, most of the 
dose is pushed forward into the cube and does not spread significantly about the beam-line. 
However, the single-angle GBFP approximation does provide better results at the interface than 
the Geant4 default physics.  

(a) 1 Discrete Angle,            (b) 8 Discrete Angles, 
      1 Discrete Energy    1 Discrete Energy   
          Speed-up~35        Speed-up~7 

               (a) Geant4 default physics      (b) Geant4 default physics 
with 0.04 range factor with 0.004 range factor 

     Speed-up~32             Speed-up~7 

Figure 21: Dose Deposition for 250-keV Electrons in Silicon Cube With Gold Insert Using 
(A) GBFP 1 Discrete Angle, 1 Discrete Energy, (b) Geant4 Default Physics with 0.04 range 

Factor, (c) GBFP 8 Discrete Angles, 1 Discrete Energy, and (d) Geant4 Default Physics 
with 0.004 range factor. 
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The improved GBFP approximation is significantly more accurate and only disagrees with the 
benchmark very close to the source. Again, the comparable Geant4 default physics model is less 
accurate than the GBFP method especially near the interface. 
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4.6.  REFLECTION AND TRANSMISSION FRACTIONS 

In this section, we present the reflection and transmission fractions. The reflection and 
transmission fractions discussed below were obtained for thin slab problems according to the 
schematic in fig. 1 with exception that we are now interested in the fraction of particles 
transmitted or reflected. For these calculations, electrons with energies below 5-keV are assumed 
to deposit all energy locally. This assumption leads to low reflection results for low energy 
electrons. Though this doesn’t model reality, this assumption was consistent between the 
benchmark and the approximations. 

In figs. 22a, 22b, 22c, and 22d, the percent of particles reflected for the benchmark and the 
relative differences for three approximations are presented. The single-angle, single-energy 
approximation is within roughly 2% agreement with the benchmark except for 10-keV source 
particles. For 10-keV particles, the single-angle is nearly 90°, so after only two collisions the 
particle could be reflected. As the source energy gets higher, 50-keV, the single angles are 
already significantly more forward peaked, so they must suffer several collisions before being 
reflected. With the mixed GBFP DCS and analog DCS approximations, the 10-keV simulation 
gets worse. Since the inelastic scattering is the dominant process as the analog inelastic MFP is 
simulated, particles likely undergo several inelastic collisions before experiencing an angular 
deflection. As the particles energy drops below 10-keV, the single-angle DCS is represented by 
an angle greater than 90° or a backscatter. After backscattering, the particle undergoes several 
more inelastic collisions and then escapes the slab. The fact that the approximation gets worse 
going from a single-energy inelastic DCS to an analog inelastic DCS, indicates that there is some 
cancellation of error in the fully discrete approximation at 10-keV. The most accurate 
approximation uses four angles and has very good agreement with the benchmark. 
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(a) Benchmark Fraction Reflected   (b) Rel. Dif. Single-Angle, 
Single-Energy DCS 

   (c) Rel. Dif. Single-Angle, (d) Rel. Dif. Four-Angle, 
       Analog Inelastic DCS Analog Inelastic DCS 

Figure 22: The Fraction of Particles Reflected (a) and the relative difference for (b) Single-
Angle, Single-Energy DCS, (c) Single-Angle, Analog Inelastic DCS, and (d) Four-Angle, 

Analog Inelastic DCS. 
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In figs. 23a, 23b, 23c, and 23d the percent of particles transmitted for the benchmark and the 
relative differences for three approximations are presented. The single-angle, single-energy 
approximation is within roughly 1-4% agreement with the benchmark. The mixed GBFP DCS 
and analog DCS approximations are an improvement over the fully discrete approximation. 
Again, the most accurate four-angle approximation has very good agreement with the 
benchmark. 

       (a) Benchmark Fraction Transmitted (b) Rel. Dif. Single-Angle, 
Single-Energy DCS 

   (c) Rel. Dif. Single-Angle, (d) Rel. Dif. Four-Angle, 
       Analog Inelastic DCS Analog Inelastic DCS 

Figure 23: The Fraction of Particles Transmitted (a) and the relative difference for (b) 
Single-Angle, Single-Energy DCS, (c) Single-Angle, Analog Inelastic DCS, and (d) Four-

Angle, Analog Inelastic DCS. 
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5. CONCLUSIONS

In many of the test cases, the GBFP method demonstrated superb efficiency gains over analog 
with acceptable levels of accuracy. In comparison with the Geant4 default physics, the GBFP 
method tended to give more accurate results for the same efficiency cost. Extensive testing was 
completed and valuable information for improvement of the current implementation was gained 
from the test suite. Corrections were made to the test code to account for the programming errors 
encountered during the extensive testing. Though the findings from initial test suite were 
promising, several test cases remain. Additional multilayer problems should be completed to 
better understand the accuracy of the GBFP method at boundaries. In addition, only normal 
incident sources were thoroughly tested, so several off-normal beam sources should be studied to 
see how angle of incidence impacts particle reflection. Also, the partial-wave DCSs were not 
thoroughly studied. Thorough testing of the DCS data will provide an interesting insight into the 
physics and more practical details like data storage issues.  

Implementation of the advance Monte Carlo method for charged particles, the GBFP method, is 
nearly complete. Once secondary electron production is incorporated, implementation of the 
physics will be complete. Additional testing will begin to determine the accuracy of the GBFP 
method when calculating quantities more relevant to secondaries like charge deposition. 
Currently, the ability of GBFP to handle secondaries is unknown, but presumed to be 
problematic. Since the GBFP inherently does not preserve the total cross section, and, therefore, 
particle number, it is possible that only a mixture of GBFP elastic scattering and analog inelastic 
scattering will result in accurate and efficient charged deposition results. 

There is still an additional implementation detail that must be addressed. That is, adaptive GBFP 
physics. Adaptive GBFP physics will provide users with an on-the-fly optimization of efficiency 
and accuracy for various applications. The purpose of adaptivity is to relieve users from the need 
to determine an optimal GBFP representation of the physics for their problem by trial and error. 
We saw that for dose calculations, the first few cells closest to the source require a more accurate 
representation of the DCSs. However, as the beam spreads further into the slab, the DCS can be 
relaxed into a more efficient representation and still maintain sufficient levels of accuracy.    
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS  
 

AFRL  Air Force Research Laboratory 

DCS  Differential Cross Section 

GBFP  Generalized Boltzmann Fokker-Plank 

MFP  Mean Free Path 

UNM  University of New Mexico
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